8.3: Conservation of Momentum (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    1539
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives

    By the end of this section, you will be able to:

    • Describe the principle of conservation of momentum.
    • Derive an expression for the conservation of momentum.
    • Explain conservation of momentum with examples.
    • Explain the principle of conservation of momentum as it relates to atomic and subatomic particles.

    Momentum is an important quantity because it is conserved. Yet it was not conserved in the examples in Impulse and Linear Momentum and Force, where large changes in momentum were produced by forces acting on the system of interest. Under what circ*mstances is momentum conserved?

    The answer to this question entails considering a sufficiently large system. It is always possible to find a larger system in which total momentum is constant, even if momentum changes for components of the system. If a football player runs into the goalpost in the end zone, there will be a force on him that causes him to bounce backward. However, the Earth also recoils —conserving momentum—because of the force applied to it through the goalpost. Because Earth is many orders of magnitude more massive than the player, its recoil is immeasurably small and can be neglected in any practical sense, but it is real nevertheless.

    Consider what happens if the masses of two colliding objects are more similar than the masses of a football player and Earth—for example, one car bumping into another, as shown in Figure \(\PageIndex{1}\). Both cars are coasting in the same direction when the lead car (labeled \(m_2\) is bumped by the trailing car (labeled \(m_1\). The only unbalanced force on each car is the force of the collision. (Assume that the effects due to friction are negligible.) Car 1 slows down as a result of the collision, losing some momentum, while car 2 speeds up and gains some momentum. We shall now show that the total momentum of the two-car system remains constant.

    8.3: Conservation of Momentum (2)

    Using the definition of impulse, the change in momentum of car 1 is given by \[\Delta p_1 = F_1 \Delta t,\] is the force on car 1 due to car 2, and \(\Delta t\)

    where \(F_1\) is the time the force acts (the duration of the collision). Intuitively, it seems obvious that the collision time is the same for both cars, but it is only true for objects traveling at ordinary speeds. This assumption must be modified for objects travelling near the speed of light, without affecting the result that momentum is conserved.

    Similarly, the change in momentum of car 2 is

    \[ \Delta p_2 = F_2 \Delta t,\]

    where \(F_2\) is the force on car 2 due to car 1, and we assume the duration of the collision \(\Delta t\) is the same for both cars. We know from Newton’s third law that \(F_2 = - F_1\), and so

    \[ \Delta p_2 = -F_1\Delta t = - \Delta p_1.\]

    Thus, the changes in momentum are equal and opposite, and

    \[\Delta p_1 + \Delta p_2 = 0.\]

    Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,

    \[p_1 + p_2 = constant\]

    \[p_1 + p_2 = p_1' + p_2', \]

    where \(p_1'\) and \(p_2'\) are the momenta of cars 1 and 2 after the collision. (We often use primes to denote the final state.)

    This result—that momentum is conserved—has validity far beyond the preceding one-dimensional case. It can be similarly shown that total momentum is conserved for any isolated system, with any number of objects in it. In equation form, the conservation of momentum principle for an isolated system is written

    \[p_{tot} = constant,\]

    or

    \[p_{tot} = p_{tot},\]

    where \( p_{tot}\) is the total momentum (the sum of the momenta of the individual objects in the system) and \( p_{tot},\) is the total momentum some time later. (The total momentum can be shown to be the momentum of the center of mass of the system.) An isolated system is defined to be one for which the net external force is zero \((F_{net} = 0)\).

    Conservation of Momentum Principle

    \[ p_{tot} = constant\]

    \[p_{tot} = p_{tot}' \, (isolated \, system)\]

    Isolated System

    An isolated system is defined to be one for which the net external force is zero \((F_{net} = 0)\).

    Perhaps an easier way to see that momentum is conserved for an isolated system is to consider Newton’s second law in terms of momentum, \(F_{net} = \frac{\Delta p_{tot}}{\Delta t}\). For an isolated system, \((F_{net} = 0)\); thus \(\Delta p_{tot} = 0\) and \(\Delta p\) is constant.

    We have noted that the three length dimensions in nature x, y and z are independent, and it is interesting to note that momentum can be conserved in different ways along each dimension. For example, during projectile motion and where air resistance is negligible, momentum is conserved in the horizontal direction because horizontal forces are zero and momentum is unchanged. But along the vertical direction, the net vertical force is not zero and the momentum of the projectile is not conserved (Figure \(\PageIndex{2}\)). However, if the momentum of the projectile-Earth system is considered in the vertical direction, we find that the total momentum is conserved.

    8.3: Conservation of Momentum (3)

    The conservation of momentum principle can be applied to systems as different as a comet striking Earth and a gas containing huge numbers of atoms and molecules. Conservation of momentum is violated only when the net external force is not zero. But another larger system can always be considered in which momentum is conserved by simply including the source of the external force. For example, in the collision of two cars considered above, the two-car system conserves momentum while each one-car system does not.

    MAKING CONNECTIONS: TAKE-HOME Investigation—Drop of Tennis Ball and a Basketball

    Hold a tennis ball side by side and in contact with a basketball. Drop the balls together. (Be careful!) What happens? Explain your observations. Now hold the tennis ball above and in contact with the basketball. What happened? Explain your observations. What do you think will happen if the basketball ball is held above and in contact with the tennis ball?

    MAKING CONNECTIONS: TAKE-HOME Investigation—Two Tennis Balls in a Ballistic Trajectory

    Tie two tennis balls together with a string about a foot long. Hold one ball and let the other hang down and throw it in a ballistic trajectory. Explain your observations. Now mark the center of the string with bright ink or attach a brightly colored sticker to it and throw again. What happened? Explain your observations.

    Some aquatic animals such as jellyfish move around based on the principles of conservation of momentum. A jellyfish fills its umbrella section with water and then pushes the water out resulting in motion in the opposite direction to that of the jet of water. Squids propel themselves in a similar manner but, in contrast with jellyfish, are able to control the direction in which they move by aiming their nozzle forward or backward. Typical squids can move at speeds of 8 to 12 km/h.

    The ballistocardiograph (BCG) was a diagnostic tool used in the second half of the 20th century to study the strength of the heart. About once a second, your heart beats, forcing blood into the aorta. A force in the opposite direction is exerted on the rest of your body (recall Newton’s third law). A ballistocardiograph is a device that can measure this reaction force. This measurement is done by using a sensor (resting on the person) or by using a moving table suspended from the ceiling. This technique can gather information on the strength of the heart beat and the volume of blood passing from the heart. However, the electrocardiogram (ECG or EKG) and the echocardiogram (cardiac ECHO or ECHO; a technique that uses ultrasound to see an image of the heart) are more widely used in the practice of cardiology.

    Making Connections: Conservation of Momentum and Collision

    Conservation of momentum is quite useful in describing collisions. Momentum is crucial to our understanding of atomic and subatomic particles because much of what we know about these particles comes from collision experiments.

    Subatomic Collisions and Momentum

    The conservation of momentum principle not only applies to the macroscopic objects, it is also essential to our explorations of atomic and subatomic particles. Giant machines hurl subatomic particles at one another, and researchers evaluate the results by assuming conservation of momentum (among other things).

    On the small scale, we find that particles and their properties are invisible to the naked eye but can be measured with our instruments, and models of these subatomic particles can be constructed to describe the results. Momentum is found to be a property of all subatomic particles including massless particles such as photons that compose light. Momentum being a property of particles hints that momentum may have an identity beyond the description of an object’s mass multiplied by the object’s velocity. Indeed, momentum relates to wave properties and plays a fundamental role in what measurements are taken and how we take these measurements. Furthermore, we find that the conservation of momentum principle is valid when considering systems of particles. We use this principle to analyze the masses and other properties of previously undetected particles, such as the nucleus of an atom and the existence of quarks that make up particles of nuclei. Figure \(\PageIndex{3}\) below illustrates how a particle scattering backward from another implies that its target is massive and dense. Experiments seeking evidence that quarks make up protons (one type of particle that makes up nuclei) scattered high-energy electrons off of protons (nuclei of hydrogen atoms). Electrons occasionally scattered straight backward in a manner that implied a very small and very dense particle makes up the proton—this observation is considered nearly direct evidence of quarks. The analysis was based partly on the same conservation of momentum principle that works so well on the large scale.

    8.3: Conservation of Momentum (4)

    Summary

    • The conservation of momentum principle is written

    \[p_{tot} = constant\] or

    \[p_{tot} = p'_{tot} \, (isolated \, system),\]

    • \(p_{tot}\) is the initial total momentum and \(p'_{tot}\) is the total momentum some time later. An isolated system is defined to be one for which the net external force is zero \((F_{net} = 0\)
    • During projectile motion and where air resistance is negligible, momentum is conserved in the horizontal direction because horizontal forces are zero.
    • Conservation of momentum applies only when the net external force is zero.
    • The conservation of momentum principle is valid when considering systems of particles.

    Glossary

    conservation of momentum principle
    when the net external force is zero, the total momentum of the system is conserved or constant
    isolated system
    a system in which the net external force is zero
    quark
    fundamental constituent of matter and an elementary particle
    8.3: Conservation of Momentum (2024)

    FAQs

    What is the answer to the conservation of momentum? ›

    What does the law of conservation of momentum state? The law of conservation of momentum states that in an isolated system the total momentum of two or more bodies acting upon each other remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.

    What is 4.4 conservation of momentum? ›

    Section Summary. The conservation of momentum principle says that the total momentum is conserved, or constant, in the absence of a net external force, as a direct consequence of Newton's third law.

    What is the 9.3 conservation of momentum? ›

    9.3 Conservation of Linear Momentum

    A closed (or isolated) system is defined to be one for which the mass remains constant, and the net external force is zero. The total momentum of a system is conserved only when the system is closed.

    How do you solve for conservation of momentum? ›

    What is the formula for the law of conservation of momentum? The formula for the Law of Conservation of Momentum is p=p' or m1v1+m2v2=m1v1'+m2v2'. This equation shows us that the sum of the momentum of all the objects in the system is constant.

    What is the formula for the change in momentum? ›

    Formula #1: Δp = m(Δv) The change in momentum (Δp) is equal to mass (m) multiplied by change in velocity (Δv). Use this formula when you know the mass of an object, as well as the velocity it gained or lost.

    How to find momentum? ›

    Momentum (P) is equal to mass (M) times velocity (v). But there are other ways to think about momentum! Force (F) is equal to the change in momentum (ΔP) over the change in time (Δt). And the change in momentum (ΔP) is also equal to the impulse (J).

    What is 2.4 conservation of momentum? ›

    Conservation of momentum (ESCJF)

    This says that if you add up all the changes in momentum for an isolated system the net result will be zero. If we add up all the momenta in the system the total momentum won't change because the net change is zero.

    What is Section 5.2 Conservation of Momentum in one dimension? ›

    When two objects collide in an isolated system, the collision does not change the total momentum of the two objects. Whatever momentum is lost by one object in the collision is gained by the other. The total momentum of the system is conserved.

    What is the formula for 4 momentum? ›

    The magnitude of an object's four-momentum is its mass, m2 = E2 −|⃗p|2. This implies that the mass of a system of particles is not the sum of the particle 3 Page 4 masses, but the magnitude of the total four-momentum of the system, which is typically larger or smaller than the sum of the masses.

    What is momentum 9th? ›

    Momentum is the measurable quantity as the object is moving and has mass and so it has the momentum. Momentum is defined as the mass (m) times the velocity (v). If an object is steady so its velocity is zero resulting in zero momentum.

    What is momentum class 11? ›

    Mathematically, momentum is the product of mass and velocity. Momentum is the quantity of motion that is made up of the amount of matter moved and the velocity at which it moves.

    What is the formula for momentum grade 9? ›

    p = m v . p = m v . You can see from the equation that momentum is directly proportional to the object's mass (m) and velocity (v). Therefore, the greater an object's mass or the greater its velocity, the greater its momentum.

    What is total momentum? ›

    The total momentum of a system is the vector sum of all the individual masses that comprise the system.

    Is momentum always conserved? ›

    Momentum is always conserved because there is no external force acting on an isolated system (like the universe). Since momentum can never change, all of its components will always remain constant. Problems brought on by collisions should be resolved using the rule of conservation of momentum.

    What is an example of momentum? ›

    For example, a heavy truck traveling on the highway has more momentum than a smaller car traveling at the same speed because it has a greater mass. Having more momentum also makes it harder for the truck to stop. An object's momentum can also change as its motion changes.

    What is conservation of energy with momentum? ›

    What these laws say is that if there are no net forces on a system, then that system will have the same momentum, p = mv, at all times. In addition, if there are no external or internal forces acting in or on a system, then the energy of that system will remain constant.

    What is a worked example of conservation of momentum? ›

    The recoil of a Gun: If a bullet is shot from a gun, both the bullet and the gun are at first very still i.e., the total momentum before firing is zero. The bullet gains a forward momentum when it gets discharged. As per the conservation of momentum, the gun gets a regressive momentum.

    What is meant by the conservation of momentum quizlet? ›

    The Law of Conservation of Momentum states: The total momentum before a collision is equal to the total momentum after a collision. If two objects collide or explode, they experience: the same force for the same amount of time.

    What is the formula for final velocity conservation of momentum? ›

    From the conservation of momentum, the formula during a collision is given by: m1v1 + m2v2 = m1v'1 + m2v'2. If the collision is perfectly inelastic, the final velocity of the system is determined using v' = (m1v1 + m2v2)/m1 + m2.

    References

    Top Articles
    Latest Posts
    Article information

    Author: Kareem Mueller DO

    Last Updated:

    Views: 6342

    Rating: 4.6 / 5 (46 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Kareem Mueller DO

    Birthday: 1997-01-04

    Address: Apt. 156 12935 Runolfsdottir Mission, Greenfort, MN 74384-6749

    Phone: +16704982844747

    Job: Corporate Administration Planner

    Hobby: Mountain biking, Jewelry making, Stone skipping, Lacemaking, Knife making, Scrapbooking, Letterboxing

    Introduction: My name is Kareem Mueller DO, I am a vivacious, super, thoughtful, excited, handsome, beautiful, combative person who loves writing and wants to share my knowledge and understanding with you.